
Abstract. The vibrational frequencies of small organic
molecules and inorganic ions were predicted both in
vacuum and in the liquid phase at the B3LYP/
6-311G++(d,p) level of theory, within the harmonic
approximation. The solvent effect was introduced as an
electrostatic influence of the bulk by means of the inte-
gral equation formalism of the polarizable continuum
model. The results show that the application of this
continuum solvation model can reduce the overall error
in the theoretical predictions. In order to improve the
quality of the results, two different scaling procedures
were applied. The frequencies obtained for the contin-
uum, when compared with vacuum calculations, show a
better linear correlation with experimental data, which
increases the efficiency of the scaling procedures. A
further reduction of the errors is obtained by partition-
ing the overall set of frequencies according to the nature
of the normal modes and the charge of the solutes. The
quality of the theoretical predictions, especially for the
stretching modes of vibration of nonionic chemical
species, is here noteworthy.
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Introduction

Experimental spectroscopy is an invaluable tool to
determine molecular structures, to study intramolecular
and intermolecular forces or to identify reactive inter-
mediates. Therefore, it is not surprising that prediction
and interpretation of vibrational spectra have been
amongst the most important applications of quantum ab
initio techniques for almost the last 3 decades. In the

recent past, density functional theory (DFT) [1] became
an attractive alternative to other methods traditionally
used by computational chemists to predict the vibra-
tional behavior of a wide range of molecular systems. In
fact, DFT calculations have been able to incorporate
electron correlation effects in the definition of molecular
force fields and to show, at the same time, a competitive
computational cost when compared with other post-
Hartree–Fock (HF) methods [2]. In the last few years,
several density functionals have been proposed and used
quite routinely as computational tools [3], but Becke’s
three-parameter exchange–correlation hybrid functional
with nonlocal correlation corrections, provided by Lee,
Yang and Parr (B3LYP) [4, 5] has revealed a remarkable
performance in the prediction of vibrational frequencies
of a wide range of chemical species [5, 6, 7, 8, 9, 10, 11].

The implementation of analytical first and second
derivatives has also played a crucial role in such suc-
cess [7], but the lack of higher derivative contributions
has always restricted the calculations within the
harmonic approximation. Therefore, the predicted
frequencies have remained affected by errors to a great
extent owing to anharmonicity effects. In addition,
there are other source of errors, like the inadequacy of
the theoretical methods to include surrounding effects,
such as the natural packing in crystal structures, the
presence of counterions in ionic substances or the local
and long-range interactions with the solvent when
experimental data is obtained in the liquid phase. It is
well known that the harmonic frequencies predicted by
HF methods are systematically overestimated by about
12% when compared with experimental fundamentals
[13]. The observation that the overall statistics of such
errors follow approximately a systematic trend (also at
other levels of theory) led several authors to propose
different scaling procedures for semiempirical, HF and
DFT calculations [8, 9, 10, 12, 14, 15, 16, 17, 18, 19,
20, 21, 22]. These scaling methods have proved to be
successful in reproducing vibrational spectra, especially
for the selected set of molecules for which they have
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been calibrated. However, transferability of the scaling
factors is a major problem, even for molecules exhib-
iting similar structural features. One important cause
for some failure in such transferability is the variability
of the interactions established between the molecule
and the surroundings, which may result in large and
unexpected effects on the vibrational behavior. There-
fore, these effects should be taken into account if
improved theoretical predictions are desired.

Concerning the particular case of solvent media, some
theoretical approaches have been employed over the last
few decades to improve the calculation of physicochemi-
cal properties of molecular systems in liquid solution [23,
24, 25, 26, 27]. More recently, some popularity has been
reached by continuum solvationmethodswhere a solute is
placed inside a cavity with appropriate shape, made in a
continuous medium characterized by a dielectric constant
e. The electronic distributionof the solute induces a charge
density at the surface of the cavity which, in turn, creates
an electric field that modifies the energy and properties of
the solute. The effect of the reaction field is solved itera-
tively in the self-consistent-field method by the inclusion
of a supplementary potential term in the solute Hamilto-
nian. This method has shown flexibility and accuracy en-
ough to become a popular tool in computational
chemistry, and has been successfully coupled with semi-
empirical, HF and DFT Hamiltonians [23]. Recently, a
vibrational analysis of the formate anion in aqueous
solutionwas reportedbyour group [12],where the integral
equation formulation of the solvation continuum model
(integral equation formalism of the polarizable contin-
uum model, IEF-PCM) [24, 25] was coupled with a wide
range of HF, Møller–Plesset and DFT levels of calcula-
tion. In particular, the promising results obtainedwith the
hybrid functional B3LYP [11, 12] led us to extend the
study to other molecular systems.

As already mentioned, the influence of the solvent
on the properties of a solute is not easy to predict and
quantify without using accurate methods. The aim of
this work is to present a systematic theoretical study of
the vibrational behavior of several neutral and charged
species in the liquid phase, using the IEF-PCM. As
a first approximation only the electrostatic influence
of the bulk is considered here. The inclusion of explicit
solvent molecules, which we intend to carry out in
future work, is expected to improve the description of
the solvation model by taking into account important
local interactions with the solute. In order to reduce
the errors in the predictions, without significant in-
crease in computational effort, the calculated har-
monics were corrected using two different and simple
scaling procedures, which are referred to in the next
section.

Methods

A quite heterogeneous set of 23 chemical species was studied in this
work, both in the gas phase and in aqueous solution or organic
solvents. The molecular systems and the corresponding surround-

ing media considered for the calculations are listed in Table 1. This
particular set of compounds was obtained by restricting ourselves
to the cases for which accurate data from liquid Raman experi-
ments are available [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46], and to those solvents for which a previous calibration has
already been implemented in software packages.

All the calculations in this work used the Gaussian 98 package of
programs [28]. The energy minimizations were carried out without
any geometry constrictions, and the B3LYP functional was used
within the DFTmethod. The frequency calculations were performed
at the same level of quantum theory and under the harmonic
approximation.1 The basis set of atomic functions employed
throughout this work was the expanded triple-zeta basis set
6-311++G(d,p), with diffusion and polarization functions added to
all the atoms. This choice was based on the good compromise ex-
pected between computation time and accuracy of the calculations in
such diverse molecular systems which include highly charged anions
and atoms of the third row of the periodic table. The integral equa-
tion formalism of the polarizable continuum model, IEF-PCM [24,
25] was employed to include the electrostatic influence of the solvent.
Each solute was inserted in a cavity with an appropriate shape based
on interlocking spheres centered on its non-hydrogen atoms, as de-
fined by the united atom topology model (UATM) [29]. The surface
of each sphere was subdivided into 60 triangular tesserae resulting
from the projection of the faces of an inscribed pentakisdodecahe-
dron. The cavity was inserted in a continuum medium characterized
by a different dielectric constant e for each solvent (Table 1). The
energyminimizations were carried out within the PCM starting from
the geometries previously optimized in the gas phase. The harmonic
frequency calculations were then performed at exactly the same level
of theory, i.e. B3LYP/6-311++G(d,p).

The statistical analysis of the errors was based on the root-
mean-square (rms) error,
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where xcalc
i and xexpt

i stand for the calculated harmonic frequencies
and the experimental fundamentals, respectively, and the summa-
tion is extended to all the N vibrations analyzed. The use of adi-
mensional relative errors seems more suitable for comparisons
between different methods and molecular systems.

In order to improve the predicted frequencies, two different
scaling procedures were used. One is the uniform scaling method,
where a single linear factor is defined, kk, which scales the calcu-
lated harmonic frequencies as

xscl
i ¼ kkx
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For each particular set of vibrations analyzed in this work, an error
function was considered with the relative deviations between xexpt

i
and xscl

i . A least-squares fitting procedure was used to minimize
such error functions and resulted in the following expression for the
scaling factor [12]:

kk ¼

P

N

i

xcalc
i

xexpt
i

P

N

i

xcalc
i

xexpt
i

� �2
: ð3Þ

The other procedure is the wavenumber linear scaling (WLS)
method [21], where a frequency-dependent scaling factor is
obtained by least-squares fitting, assuming a linear relationship
between xexpt

i

�

xcalc
i and xcalc

i .

1Traditionally, spectroscopists have used the term frequency
instead of wavenumber to indicate a quantity expressed in units of
reciprocal centimeters. This convention will be used throughout
this work
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Discussion

Analysis for a vacuum

The geometry optimizations were started from reason-
able initial structures taken from experimental data or
high-level theoretical calculations (see references in
Table 1). The assignment of each calculated frequency
to the corresponding normal mode was established
through the analysis of the displacements of the nuclei,
with the use of the visualization program Molekel [30].
The predictions carried out for a vacuum were all
compared with available gas-phase IR or Raman
experimental data [31, 32, 33, 34, 35, 36, 37]. In the
particular case of the ions, solid-phase Raman spectra
were taken as references [31, 38, 39, 40, 41, 42].

The comparison of the overall set of calculated fre-
quencies with the corresponding experimental funda-
mentals shows that, in general, DFT performs better
than HF methods. This result is not surprising, and
corroborates other previous studies on the performance
of DFT methods in predicting vibrational frequencies [9,
10, 11, 12, 18, 19, 20]. In fact, the value of 8.93% ob-
tained for the rms of the relative errors is significantly
smaller than the typical 12% of standard HF methods.
A scatter plot of experimental data against calculated
values is shown in Fig. 1, and yields a reasonable
Pearson correlation coefficient (r=0.9976) for a linear
regression with the intercept at the origin. It is quite
evident that the deviation from linearity is not homo-
geneous over all the range of frequencies; for example,
for low frequencies the predictions are systematically
underestimated, whereas for high frequencies a general
overestimation is observed. Besides the obvious trend of
the absolute deviation to increase with frequency, the

characteristics of the normal modes seem to include
some perturbation in that general behavior. Therefore, a
comparative statistical analysis was done in some dif-
ferent partitions of the overall set of frequencies. Firstly,
and regarding the nature of the normal modes, three
different subsets were proposed, namely stretch, bend
and other. As shown in Table 2, the value of the rms
decreases from 8.93 to 7.06% for stretching but an
increase is observed in bending and other modes of
vibration. In addition, the rms of the absolute errors,
rmsabs, shows the opposite behavior, increasing from
77.2 cm)1 in the overall set to 102.2 cm)1 in stretching
modes, whereas for bend and other subsets a consider-
able decrease to 44.0 and 43.5 cm)1, respectively, is
observed. These results show that, though the absolute
deviations are slight bigger for stretching modes, the
relative errors become smaller owing to the typical high
frequency of most of these modes. On the other hand,
the remaining modes are predicted with smaller absolute
errors, but the corresponding lower values of the
frequency result in a loss of the relative accuracy.

The comparison between theoretical predictions and
experimental data must be done carefully. Calculations
carried out for a vacuum cannot reproduce exactly the
real conditions of a gas-phase spectroscopy experiment.
In particular, when comparison is made with solid-phase
spectroscopy, some important environmental effects are
neglected, such as the natural packing of crystal struc-
tures and/or the presence of neighboring ions in ionic
substances. The overall set of 23 molecular systems
includes ten anions (Table 1), for which solid-phase
spectroscopy data are available [31, 38, 39, 40, 41, 42].
Therefore, the original set was partitioned into two
different subsets, namely ionic and nonionic. In this
case, it is observed that calculations perform better for

Table 1. The 23 chemical
species and respective media
considered for the calculations.
The experimental spectroscopy
data, taken from references, are
indicated for each case

Species Medium � Species Medium �

C6H6 Vacuum[31] H2O Vacuum[33]
Benzene [35] 2.247 Water[35] 78.39

BrC3OH Vacuum[32] HCOO) Vacuum[38]
Benzene [43] 2.247 Water[44] 78.39

ClC3OH Vacuum[32] NO2
) Vacuum [39]

Benzene[43] 2.247 Water[45] 78.39
C2H3N Vacuum[33] S4

2) Vacuum[40]
Acetonitrile[33] 36.64 Water [40] 78.39

CH3CONHCl Vacuum[34] BrO4
) Vacuum [41]

Acetonitrile[34] 36.64 Water[46] 78.39
CHCl3 Vacuum[33] ClO4

) Vacuum[31]
Chloroform[35] 4.9 Water [46] 78.39

CH3OH Vacuum[35] NO3
) Vacuum[39]

Methanol[35] 32.63 Water [47] 78.39
CCl4 Vacuum[35] CS3

2) Vacuum[42]
Carbon tetrachloride [33] 2.228 Water [42] 78.39

C2H4Cl2 Vacuum [35] SO4
2) Vacuum[31]

1,2-Dichloroethane[35] 10.36 Water [46] 78.39
CH3COCH3 Vacuum[33] PO4

3) Vacuum [31]
Acetone[35] 20.7 Water [46] 78.39

CH3NO2 Vacuum[36] PS4
3) Vacuum[42]

Nitromethane[35] 38.2 Water [42] 78.39
CH3OCONH2 Vacuum[37]

Chloroform[37] 4.9
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nonionic systems (both relative and absolute rms have
decreased) than for the ions. If we go further in the
partition, and consider the stretch and bend subsets for
both types of molecular systems, the main contribution
for that different performance becomes evident. In
fact, the stretching modes of the nonionic systems are
predicted with lower relative errors (rms=4.31%)
when compared with those of the ions (rms=11.1%).
Concerning the bending modes, the results are not
so encouraging, though the predictions are still worst
for the ionic systems.

In order to improve the agreement between predicted
frequencies and experimental fundamentals, two differ-
ent scaling procedures were applied to all the subsets
considered in Table 2, namely a uniform scaling method
(single k) and a linear scaling method (k linear). The
former is an adaptation of the method proposed by
Scott and Radom [18] to minimize the relative errors of
the predictions [12], whereas the later is based on the
WLS method of Yoshida and coworkers [21, 22], where
a linear relationship between the scaling factor and the
vibrational wavenumbers is assumed. The uniform
scaling method has shown no efficiency for the whole set
of frequencies, nor for its partition into three types of
modes. However, if the partition of the original set into
ionic and nonionic molecular systems is considered, the

improvement with that scaling method is evident for
both subsets. In particular, the ionic systems show a
considerable reduction in the relative rms (from 13.0 to
10.4%), though with some cost in the high-frequency
modes (the absolute rms has increased from 91.8 to
131.6 cm)1). The small error of rms=6.70% obtained in
the nonionic subset is reduced to rms=6.35% by this
uniform scaling method. If we partition these two sub-
sets into stretching and bending modes (see last four
rows of Table 2) we realize that the scaling can reduce
the errors in all the cases. However, as far as the relative
rms are concerned, the scaling seems to be more effective
for the ionic systems than for the nonionic ones. The
error obtained for the stretching modes of the nonionic
systems, which is surprisingly small even before the
scaling, is reduced to rms=3.39%.

The uniform scaling method is an attractive correc-
tive technique because of its simplicity and general
application, but the different magnitudes of k presented
in Table 2 show that the performance of the theoretical
calculations depends on the nature of the molecular
system and the type of vibrational mode. The WLS
method [21, 22], on the other hand, is able to introduce
some variability of the scale factor without significant
increase of data processing. A scatter plot of the ratio
xexpt/xcalc against xcalc is shown in Fig. 2 for the whole

Fig. 1. Correlation between the
unscaled predictions of the
harmonic frequencies for a
vacuum, xcalc

i , and the
experimental values, xexpt

i
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set of frequencies, grouped by charge of the molecular
system and the type of normal modes. This figure shows
the dependence of the ratios upon the characteristics of
the normal modes and their bigger dispersion below
1,000 cm)1, which justify the trial partitions referred to
earlier. The WLS linear relationship obtained by least-
squares fitting for all the frequency subsets considered so
far and the values of the rms obtained by the subsequent
correction are shown in Table 2. In general, and as long
as our sample of frequencies is concerned, the results
show that this method has been more effective than the
uniform scaling. Its performance over the whole set of
frequencies is not very impressive (the rms has decreased
from 8.92 to 8.61%), however, for the partition by
modes of vibration, the improvement of the error in the
prediction of stretching and other modes is clear. The
results also show that ionic systems are more sensitive to
this linear scaling than nonionic ones, as was already
observed with the uniform scaling. In the ionic systems,
the bending modes are more effectively corrected than
the stretching modes, but the reverse is observed in the
nonionic subset, where the small value of the relative
errors obtained for the stretching modes, rms=3.09%, is
noteworthy.

Analysis for the liquid phase

The aim of the study presented in this section was to
investigate the effect of the surrounding liquid medium
on the geometries and frequencies of all the 23 molecular
systems. The solvent effect was introduced by means of
the IEF-PCM [24, 25] at the B3LYP/6-311++G(d,p)
level of calculation. The energy minimizations carried

out in the liquid phase (Table 1 for the solvent consid-
ered for each chemical species) were all started from the
optimized structures previously obtained for a vacuum.
The presence of the solvent did not change significantly
the structures of the solutes. The mean of the absolute
deviations between vacuum- and continuum-optimized
structures was 0.0072 Å for the bond lengths and 0.65�
for the bond angles. The most extreme case was found to
be the S4

2) anion, which shows a variation of )3.8� in
the S–S–S angles and a variation of )12.7� in its dihedral
angle (more details about these structures can be pro-
vided upon request). In spite of the absence of variability
in the optimized structures, some changes were observed
in the calculated frequencies (these data are available
upon request). The errors reported in this section were
based on the comparison between the predicted fre-
quencies and the experimental data obtained by liquid-
phase Raman techniques [33, 34, 35, 37, 40, 42, 43, 44,
45, 46, 47]. Apart from the small increase of the error for
the stretching modes of the nonionic systems, the results
compiled in Table 3 show that the IEF-PCM improved
the theoretical predictions even before any correction
was applied. If the partition by type of vibration is
considered, it is observed that the bending modes are
much more affected by the inclusion of the continuum
solvent; on the other hand, the nonionic systems are
shown to be more sensitive to this effect than the ionic
ones. In fact, the last partition presented in Table 3
shows that the bending modes of the nonionic systems
decrease the value of the relative rms by 5.01 when
compared with the gas-phase values, and this is the
biggest reduction observed in all the partitions.

In general, for all the 23 solutes, the application of
either correction method leads to the same conclusion

Table 2. Statistical analysis of the theoretical predictions for a vacuum. Root mean square of the relative errors (rms) and of the absolute
errors (rmsabs)

Species Normal
modesa

Without correction Correction with single k Correction with k linear

rms (%) rmsabs (cm
)1) k rms (%) rmsabs(cm

)1) k=b+mxcalc rms (%) rmsabs(cm
)1)

Overall (154) 8.93 77.2 1.0044 8.92 81.6 b=1.0817 8.61 71.0
m=)4.4969·10)5

Overall Stretch (73) 7.06 102.2 0.9993 7.06 101.2 b=1.0816 6.16 70.6
m=)3.8658·10)5

Bend (63) 10.5 44.0 1.0089 10.5 47.2 b=1.1182 10.4 41.1
m=)9.9503·10)5

Other (18) 9.64 43.5 1.0104 9.59 46.7 b=1.2848 8.32 49.4
m=)2.7881·10)4

Ionic Overall (43) 13.0 91.8 1.0865 10.4 131.6 b=1.1877 9.04 115.3
m=)8.3939·10)5

Nonionic Overall (111) 6.70 70.7 0.9788 6.35 44.8 b=1.0134 6.35 35.4
m=)1.7837·10)5

Ionic Stretch (22) 11.1 121.4 1.0702 8.93 158.5 b=1.1640 7.30 103.3
m=)6.0824·10)5

Bend (19) 13.6 43.1 1.0978 10.3 61.1 b=1.2428 8.46 49.5
m=)2.1609x10)4

Nonionic Stretch (51) 4.31 92.6 0.9742 3.39 41.6 b=1.0075 3.09 27.0
m=)1.4746·10)5

Bend (44) 8.87 44.3 0.9785 8.59 39.6 b=1.0184 8.81 38.6
m=)2.6344·10)5

aThe number of frequencies analyzed in each subset are shown in parentheses
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about the effect of the polarizable continuum over the
vibrational modes. A scatter plot of the ratio xexpt/xcalc

against xcalc for the whole set of frequencies calculated
in the continuum is shown in Fig. 3. If a comparison is
made with the vacuum calculations (Fig. 2), it is ob-
served that the dispersion of the ratio values, though not
satisfactory, is reduced to some extent; the overall linear
correlation coefficient changed from r=0.43321 to
r=0.49173. The worst predictions appear in the low-
frequency region, but even excluding the points which
could be treated as outliers, no significant improvement
in the linear regression is obtained. Those few special
cases correspond to the overestimated value of the
N-chloroacetamide N–Cl stretching mode (with a xexpt/
xcalc ratio around 0.85, Fig. 3), and the three modes
exhibiting a ratio above 1.3, namely the S–S–S torsion
and bending modes of the S4

2) anion, and the torsion
mode of PS4

3). Compounds containing halogen atoms
or having linear molecular structures were already
referred to as being special cases of poor theoretical
prediction [21, 22]. In the particular case of
N-chloroacetamide in acetonitrile, a side calculation was
performed in order to evaluate the influence of the
UATM on the prediction of the N–Cl stretching
mode. A new cavity to lodge the solute molecule was
defined with spheres also centered on the hydrogen
atoms; however, the calculated harmonic frequency
showed only a small change from 466.0 to 461.8 cm)1.

The combined method of the IEF-PCM with the
WLS correction algorithm seems to constitute a prom-
ising strategy to treat the vibrational frequencies, be-
cause of the small errors that can result, even within the
harmonic approximation. For the nonionic systems the
errors were quite impressive; the values of the rms for
stretching and bending modes were 2.92 and 3.35%,
respectively. The comparison between the calculations
carried out for a vacuum and a continuum shows that, in
general, the influence of the reaction field is bigger for
the charged molecular systems. The 290.6 cm)1 devia-
tion for the C–H stretching mode of the formate anion,
already studied in a previous work [12], constitutes a
special example of that solvent influence. In fact, the
IEF-PCM has been shown to have great success in
treating the strong electrostatic contribution to the
solute–solvent interactions [23]; however, a few other
modes belonging to noncharged systems were also found
to have deviations in the calculated values greater than
100 cm)1, which is the case of the symmetric and
asymmetric O–H stretching modes in the water molecule
(132.2 and 161.2 cm)1, respectively) and the 219.6 cm)1

deviation for the symmetric O–H stretching in methanol.
The relative errors of the first two predictions for a
vacuum were, respectively, 4.38 and 4.44%, whereas for
the continuum those errors decrease to 0.77 and 0.14%.
However, the error in the symmetric O–H stretching
frequency of methanol increased from 4.53% for a

Fig. 2. Correlation between xcalc
i and the ratios of xexpt

i to the xcalc
i

frequencies. The results are grouped by charge of the molecular
system and type of vibrational mode
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vacuum to 7.03% after the inclusion of the reaction field
effect. As stressed by Cappelli et al. [48] in a study of the
O–H stretching mode in water and methanol, the con-
tinuum approach with a single solute molecule inside the
cavity is not appropriate to describe the strong local
interactions established between the hydroxyl group and
the solvent molecules. Therefore, as suggested by the
authors, a reasonable description of both cases can be
obtained by the inclusion of one single solvent molecule,
which will be considered in future work. Besides, as
pointed out by Cappelli et al. [49], the presence of ex-
plicit solvent molecules may also affect scaling proce-
dures, implying that the treatment of the theoretical
predictions should be reviewed accordingly.

Conclusions

The vibrations of 13 different organic molecules and 10
inorganic ions were analyzed at the B3LYP/6-
311++G(d,p) level of calculation, both for the gas and
the liquid phase. Concerning the gas-phase results, and
as was already expected, DFT improves the quality of
the predictions when compared with HF methods, even
within the harmonic approximation. Comparison with
gas-phase experimental results was always preferred
when data were available but, especially for the ions,
solid-phase spectroscopy was taken as a reference. Al-
though the interactions felt by the molecules in gas-
phase experiments could be assumed as negligible, in the
condensed phase the absence of a good description of
the environment is one source of error in the frequency
calculations. Therefore, to take into account the sol-
vating ambience around the solute, the IEF-PCM was
employed at the same DFT level. The comparison of the

theoretical predictions with experimental data obtained
from liquid-phase Raman spectroscopy techniques
constitutes a good test for the polarizable continuum
solvation model employed. The rms of the relative errors
decreased from 8.93 to 6.75% in the overall set of 168
vibrational frequencies considered in this work. In order
to reduce the errors of the theoretical predictions even
further, two simple corrective procedures were employed
without significant increase in computational time. The
uniform scaling procedure corrects the calculated fre-
quencies with a single optimized factor, and the WLS
applied a scaling factor that varies linearly with the
frequency. In general, the latter corrective method was
shown to be more effective, and its application to the
overall set of frequencies was able to reduce the rms of
the relative errors to 8.61 and 5.98% for vacuum and
liquid calculations, respectively.

The observation that the errors in the predictions do
not follow the same trend led us to suggest some parti-
tions of the overall set of frequencies into different
subsets, according to the type of the normal modes and
the nature of the molecular systems. The different values
of the final rms obtained with this theoretical method,
clearly show that the errors in the predictions greatly
depend on the type of the normal mode. The small value
of rms=2.92% obtained for the stretching modes of
nonionic systems is noteworthy.

For molecular systems exhibiting strong solute–
solvent local interactions, which is the case here of the
O–H in water and methanol, the single-solute molecule
approach in the continuum solvation model is not
appropriate to describe their normal modes of vibration,
and the addition of a few explicit solvent molecules
is strongly suggested [48], which in fact should be

Table 3. Statistical analysis of the theoretical predictions for the continuum. rms and rmsabs

Species Normal
modesa

Without correction Correction with single k Correction with k linear

rms (%) rmsabs(cm
)1) k rms (%) rmsabs(cm

)1) k=b+mxcalc rms (%) rmsabs(cm
)1)

Overall (168) 6.75 70.4 1.005 6.73 76.6 b=1.0701 5.98 55.5
m=)4.0640·10)5

Overall Stretch (81) 5.56 93.7 0.9927 5.51 82.2 b=1.0594 4.52 52.9
m=)3.2262·10)5

Bend (69) 7.36 35.4 1.0170 7.17 43.6 b=1.1076 6.25 33.5
m=)9.3367·10)5

Other (18) 8.89 43.5 1.0205 8.66 43.7 b=1.2270 8.43 48.2
m=)2.1149·10)4

Ionic Overall
(45)

12.3 56.6 1.0749 8.60 88.9 b=1.1561 7.63 94.9
m=)7.0790·10)5

Nonionic Overall
(123)

4.19 74.8 0.9841 3.87 52.3 b=1.0182 3.38 28.6
m=)2.0553·10)5

Ionic Stretch (23) 7.70 66.5 1.0545 5.72 92.5 b=1.1100 4.63 62.3
m=)3.9550·10)5

Bend (20) 12.3 44.6 1.0904 9.10 50.4 b=1.2120 7.63 49.5
m=)1.7938·10)4

Nonionic Stretch (58) 4.43 102.6 0.9719 3.36 46.4 b=1.0108 2.92 26.0
m=)1.7199·10)5

Bend (49) 3.86 30.8 0.9923 3.78 25.9 b=1.0326 3.35 22.0
m=)3.8844·10)5

aThe number of frequencies analyzed in each subset are shown in parentheses
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considered for future work. This theoretical method also
shows a poor predictive performance for some peculiar
modes, such as the overestimated value of the N-chlo-
roacetamide N–Cl stretching mode (with a xexpt/xcalc

ratio around 0.85, Fig. 3), and other modes exhibiting a
ratio above 1.3, like the S–S–S torsion and bending
modes of the S4

2) anion and the rocking mode of PS4
3).

The failure of predictions for compounds containing
halogen atoms or having linear molecular structures has
already been reported [22]. However, this combined
DFT and polarizable continuum method seems to be
very promising as an expedite theoretical tool to predict
vibrational frequencies of small chemical species in
solution. An attempt should be made in future to in-
crease the number of molecular systems under study,
and also to include a few solvent molecules around the
solutes, especially in those cases where strong local
interactions can be established.
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